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Euler and Taylor means of the Fourier series for functions in the class Lip «.
0 < a < I, have been studied by several authors. In this note. the orders of approx-
imation to functions f in this class by either the Euler (£, 1)-means or thc Taylor
means are shown to be of the Jackson order provided that, in each case, a suitable
integrability condition is imposed upon the function

o) =S+ 1) =2 (x) + S (x - D}

PART |

Introduction

Several fundamental properties of (E, ¢) summability have been discussed
in Hardy |2], Knopp |5], Prachar and Schmetterer |7]. and Bollinger |1].
Lorch [6] has discussed the Lebesgue constants for (£.1) summability in
1950. Sufficient conditions for Euler summability were studied by Holland et
al. [4] in 1975. The degree (order) of approximation by (£.g) means has
been discussed by Holland and Sahney (3] in 1976.

For the case ¢ = I, a very precise upper bound will be determined for
the degree of approximation by Euler means of the Fourier series for
functions /€ Lip a, 0 <a < 1. The L, norm of the kernel K, , of this
summability method has been studied by Lorch [6]. and since its order is
(2/7%)(log n + O(1)) there is no hope to obtain the Jackson order for the
error using (E, 1)-means, without imposing further conditions.

I. Let f'€ L{—n, =) and be 2n-periodic. Let the Fourier series associated
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APPROXIMATION BY EULER AND TAYLOR MEANS 25

with f be given by S(x)=Y*_c,e™, and its nth partial sum be
S (x)=>"__, c,e™. For each x, write

o) =3 {f(x + 1) =2 () +/(x =D} (L.1)

Also, for each ¢ >0, let T, , =T, ,(f;-) be the Euler (E,g)-means of S.
That is,

1 n
T, o(x) izm \—, (::l) q" "8, (x). (1.2)

LEMMA 1.3.

T =To )= | K= 00 d

Y —n

1 n
- 2_71[7 K, (O0f(x—0)dt,

where

. t
a2 SIN (n@, + 7)

2
q°+2qcost+1
K, (1) = ( : ) (1.4)
q +2q+1 .t
sin ——
2
and 8, € (—n, ) is uniquely determined by the following relationships:
sin 8, = g sin(r — 4,), sgn 6, =sgnt, FARANES:2
In particular,
.o fn+1
;- Sin ( 2 ) !
K, (t)=cos" (—2~) B (see Hardy [2]). (1.5)
sin >

Furthermore, the error function in approximating f by T, (f.-) is given by

1 r7
Lol =/ () =— | 00 K, 40 d. (1.6)

Proof. It is well known that S, can be obtained by taking the
convolution of f with the Dirichlet kernel:

Sm(x):%z—j:f(x—r)( i e”") d. (1.7)

- k=-m
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Hence we have

2n

| - 1 " \ it
Ty yl¥) === | f(xft)\?A—Tl (”)q,, w Nl g,

(I+q) mon m A_

However, we have, for 1 0 and |1] < 7.

1 ”~, n ] - (’i”” ] - e
bos b= _— AN ( ) qn mly g et —— e it

(1 +q)" ;7= \m | ~e I —e

" . . il [
— I N\ ( n ) qn m .,,-,,L_ ()unr o € I init
n d—
(1+q) mo0 1 A !
2 sin —- 2i sin 5

= Im e (1+q ‘o).
1 " sin —
(1 +qg) >

By simple geometry (cf. Fig. 1). this expression can be written as

n

L= (142¢ "cost4q ) sin (n(}, T

l n M . “
(1 +g)" sin 5

- (q2 +2gcost+ 1 )""2
O\ ¢+

FIGURE |
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I
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with sin 6, =g sin(t —#,), sgn @, =sgn¢, and |6,| << n In particular, if
g =1, then 8,=1t/2, so that

,sin<n+l)t sin<n+1‘)t

K :<1+cost>’”‘ 2 :cos"(v—’—)-———g——’——
! 2 ot 2 ot
sm7 sm-2—

Next, we also have
o
— { (px([) Kn.q([) di
Ty

l -7
- ﬁ_,‘o (S +1) =2 (x) +f(x — )] K, (1) dt

1 =
= | &+ +/x=0]K, (o) dr

1 =
Af(x)ﬁ,‘, K, (1) dt
= Tn.q(x) —f(X) I

2. We now study the order of approximation of functions f€ Lip «a.
0 < a < 1, by the Euler (£, 1) means of the Fourier series. We demonstrate
in the following theorem that whereas the order of approximation to
functions in Lip «, by their Fourier series, is O(log n/n®), the order of
approximation by (E, 1) means of their Fourier series can be reduced to
0(1/n®) provided that a certain integrability condition is imposed upon ¢ _(¢).
This gives the optimal order of approximation using Euler (£, I)-means.

We have the following theorem:

THEOREM 2.1. Iff€ Lipa, 0 <a < 1, is 2z-periodic, and

T

0. (1) — 0, (t + 27n> )

“2n/n t

dt < Mn—° (2.2)

Jor all x, then

Eudl) =T, i) =S 0 =0 (). (.3)
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where

T, /i )=T,,(f)
is the Euler (E, l)-means of the Fourier series for f.

Proof. Using the (E, 1)-means of the Fourier series for f, we have

(T =) =— [ 00 K, (00

|
T {70

~U y

d ~bn T
S ook, 0
=p,+ P2+ 05 say,

where we write a, = (2n/n) and b, = 2r/n)%. a/(a + 1)< f < 1/2. Now.

1 ‘-“n lo () nt =

<— —d
I ey
" 1’””| 1) dt
- 4 LN (p,\‘( )‘
< M|'“”z“ dt
= 4 R
— M (2n)l+n n'n
4(1 + a) '

where | f(x) —f(x + )] < Mn ¢, 0 M < . Thus,
lp,|=0(n"*).
Also,

2 t A 1)t
\Pa\é—l Mlcos"( )sm(n;—)—— dt
ﬂ“bn t

2

158 o

(1 /2=
:O(HB)COS” 57(7) S.rh ‘(DY(I)‘ dt
) | 228 g2
s 12
222,28,
=0(n?)exp |— 5
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and since 26 — 1 <0,
lps|=0(r""),  r> L

The study of p, is more complicated and requires the following
calculations. We have

.+ 1)
sin ———

b

" (/)x(t) l
=2 [ osn =

np, [ cos” = 5

Ya,

dt

sin —
2

0s" — si
Ya, .1 2 2
sin —
2

bn—an t t 1)t
[T ) o (1) g D

. t 2
0 sin —-( +4,)

bn t t 1)¢
o) o £ e e,

2

rbn t)— t t 1)¢
[ (px() (px( +an) cos” — sin (I’Z+2 ) dt

Tdp

!
sin —
2

bnp (¢ t t 1) ¢
+( M[COSRTACOSR( +2a”)Jsin(n+2 ) dt

Ty : {
SIm —
2

+

b t+a,
o.(t+a,)cos" ( +2 ")

Cd,

1 1 o n4+ 1)t
X — sm( ) dt
.1 . (t+a,) 2
sin—  sin ———~
2 2
o (t+a, L ft+a,y o (n+1)e
2 ) cos n( ) dt
(t+a,) 2 2

2

by o (t+a,) R (t + a") - (n+ 1)t
2 2

S
sin

dt

+ |
“by—ay Sin ([ + an)
2

=L+, +1,+1,+1..

A407°39 1.3
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Now,
ety et +a,
“”é,‘ 0. (1) w_i‘ | 4
e Sin —
2
bl (1) = oL +
< 0.(1) 93_\( a,) di
g‘Mn [4]
and

an .t 2 2
sin —
, .
ot +a,) P P (n+ 1)t
= — COS —~sin — si d
o L2 212 2
sin —
2

where t < & <t + (2n/n) < 21. Thus

Pt +a,) w
‘(D,\( l1)|¥*[(1r

|1,
- a, ! 2

4

1t by
< —i— M ‘ (I + an)” dl

—_ O(brllin) — 0(” Bl ou))
=0(n ")

Also,

~hy

Lo |
LI Jodt+a,) - ldz
l

‘a, . . t+a,
sin-—  sin

2 2




APPROXIMATION BY EULER AND TAYLOR MEANS

so that
~bn (¢ a
Iase < Mgl [ @)
‘ ~”n l([ + an)
bn dt
= M.‘ —I—_v_] =t
an ! <_+ 1)
an
e dt
< M ' f I a
.(Iﬂ [ ()_ + 1 )
B ‘.f 1 di <
U+t «©
Consequently,
L <Mn "
Also,
ay 1(/) ([)‘ nt
1,/ < AT
< '|a,, : 3
=0(n(2a,)'**)
=0(n ).
Finally.
b \
" wx([+a;1) ([+a") . nf
I|= " cos" [——| —sin -
s »‘h,,a,,( t+ta, T2 2
| sin ——=*
I 2
<M "(t+b,,)“"' dt
0
<Mi(a,+b,)" —byt.
However,
a [¢3
(ay +b,)" — b3 = b3 ;(1 +5'1) . E
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Thus,
[1|=0(n ).
Combining /,...., /5 we have

p,=0(n""). O<a<l.

Consequently, combining p,, p, and p,, we obtain

E, (f)=0(n"")
which was to be proved. N
3. Remark: (1) Large “0” in (2.3) can be replaced by small “o", if the
corresponding change is made in (2.2).

(2) For g+ 1 and >0, the simple estimates in our proof give the weaker
result due to Singh [8] in Lemma 1.3, viz.,

(T, =/ Nx)=0(n ey,

PArT 11

1. Let {a,,} be a matrix defined by

(1 _ r)rH 1 011 ;x‘
=\ g ¢ for jré| < 1.
(1 B rg)n+l - nk | i
and » taking only non-negative integer values.
We study, in this section, 2z-periodic functions f€ L |0, 2n| with a
Fourier representation

fx)= N (a,cosnx +b,sinnx)= N A,(x).

and we let @,(1) =4 {f(x + ) = 27(x) +/(x = D)}

DerINITION 1.1. A given sequence |s,} is said to be Taylor summable,
if

£

r_ \~
Cy= —_— Qi Sk

n
k-0

tends to a limit as n — oo, where 0 < r < L.
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Several authors, namely, Ishiguro [12], Lorch and Newman [13], and
Forbes [10], have studied this method of summability. In 1979, Holland et
al. |11] found a criterion for Taylor summability of Fourier series.

Let us write = e’™ and 1 — re™* = pe*"_ Then

o

N a,, sin(k+ u

k-0

b4
Im : {ankenkueiu}

0

k-
gw iu(
( 1

Im

BT

_ S L—ry"! Wend a2t o |

_Im?( P ) ¢ ¢
BT u_||
_( 5 ) sm)(n—l—l) 2(u+9)~n+le.

However, writing S, to be the kth partial sum of the Fourier series for f. we
have

L7 o 1
S, ~S=—| w"—()sin(kJr—)tdt:
T 7y SinL \ 2
2

1 /1—=r\""" o (1) .
:_( r) [ (p"()sm
\ {

(n+ 1)([+0)~%(n+ 1)‘ dr. (1.2)

where now 1 — re'’ = pe %

2. We now have the following theorem:

THEOREM 2.1. If f€ Lipa, 0 < a < 1, is 2n-periodic, and

x4 0 — o {t
‘ |¢r() (i\( +an>| d[

n

=0~

uniformly in x, where a, =n{n+3 + (n+ Dr/(1 —r)} "', then

o — /() =0(n"),

where o, = o, (f, -) is the Taylor mean of order n of the Fourier series for f.
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We require the following lemmas.

Lemma 2.2 |10].

n

i (L) <o v

A>0.01<

o
and
(i) ‘ ( | —r V)” — exp (f«z?lir;rT) ‘ < Bat*, B constant. t > Q.
LEmma 2.3 |14].
{ g— 1 i, —| < et 0<ig % ¢ constant.

Proof of the Theorem. Using the Taylor transform of (S, — S}. we have

oy —[(x)
1 -G, ( by T (0,\-(1) ] — " 1 . \ ; . /
?“, *Ju”ﬁ,‘h”J o, ( ; ) 51“)('1+"2*)1+(n+1)9\ dt
Sln7

=Moot e say.,

here b n 1+a<ﬂ‘ |
whe =a for e
re On " d+a 2

Now, since |1 — r{ < p and isin (¢/2)| > (¢/7). then using Lemma 2.3 we have

P ’g‘x(l)i § ! ) ( 3
bpp, \ ;
,n,(§.0 ; /(n+ t+{n+ Dlct +

{
- ) \ dr.

Also, since 1 < & then

Il <Cn| ool dr
i

— C//n(a’l" u)
=0(n ).

We next consider

] o (1 1¥ 11+l.r 1
;]3:7“ 0.(0) r) sm}(\n+7)t+(n+l)8(dﬁ
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ﬂb 1 ‘ ‘w ([)' Aln+ 12 dt

By Lemma 2.2, (1 ~r/p)" < e """, 0 <t < 7, so that
1
< —
T

IN
o>~

"1 e Hn+l)h ' 1(0 ([)ldl

— gyl 24
< CnPe=t"n" 7, A’ constant.

Finally, we study #, by writing

1 ed) 1—r)'“ sin3(11+%)t+(n+1)9( dt

My = e 1 p \
SIn —
2
bo g (1 R I
-~ ‘ (p () \nrtau(lfr)‘Sln ‘ (n+—) !+ ()l+ ])9( d[
T ta, t ) ) 2, s
1 b, I [ — ntl
— ! I—
N T <a, o0 sin ! ( g )
2
I R I \ (’n +_L) r+(n+ 1)(9) dt
; AN ‘
2

=u,+u,,  say.

Now we have

b, 2 1‘ n+l - ;
s <[ oo S (- e e ot

Ya, tly op }
by 2 1 1 —r noe
] ool = —— ) di
S sin — p
2
= 1’1 + Vl‘
say, where by Lemma 2.2
t
v, <2 llw(»3(+1w dr,

tda,

<C - nn rrlﬁanﬁn)/i

=0(n °).
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Also,

< C | ids

: u!l

<C'n JSn 800 - a)
<

=0(n ") by hypothesis.

Finally, we write

2 by ! 2 AR
‘ o) e M gin (n + =+
J t 2 1 —r

1 1
n -r)ldt

My =—
T a

”

+ i “h” (0\([) e et 200 -
nl,

"

X

iV (ne o (
51n?(n+ 2)t+(n+l)9‘

. ( N 1 N 1+ 1
— Sin n PR
\ 2 [ —r

~r) tl dt
=Xt X say,

where

rt

— ¥

dr

2 by \,l
s —| M%im+lﬁe—]

Ty

"

2 by i |
< 2C P fo )
Tl !

n

(n+ 1y by Lemma 2.3.

=0(n"*), by hypothesis.

and since

oy ,1+”+1 r, :
=TT 1—r

then

Xi=——

-
= [ ' (I"Me ar(tta,) il e
/N L+ a,

. 1 a+ 1
Xsm(n+~—+ ~r>tdt.
. 2 1 —r
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Taking the average, we have that

L b q)x(t) - ¢.r(t + an) e nre2i2(1—r)?

= sin(a " 'nt) dt

nla, !
7l 1
_efnr(Ha,,)z"z“”)ll Siﬂ(a;] nt) dt
=0(n"")

by the same method as used in Part I. Hence

xi=0(n"")

and thus

lo}, —f )| =0(""). N

3. Remarks: (1) We believe that O(n~*) is the optimal order and that
Taylor means are saturated with order 0(n~®). Also, for @ = 1, the order of
error is believed to be 0{log n/n°!.

(2) Large “O” of the theorem may again be replaced by small “0,” if in
the hypotheses of the theorem we replace large “O” by small “o0™ and Lip «
by lip a (the set of functions f satisfying |f(x + &) —/(x) =o(h|").
uniformly in x).
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