On the Order of Approximation by Euler and Taylor Means*

C. K. Chui and A. S. B. Holland ${ }^{\dagger}$
Department of Mathematics, Texas A d M University, College Station, Texas 77843. U.S.A. Communicated by R. Bojanic

Received December 20, 1980; revised May 14, 1982

Euler and Taylor means of the Fourier series for functions in the class Lip a. $0<a<1$, have been studied by several authors. In this note, the orders of approximation to functions f in this class by either the Euler ($E, 1$) -means or the Taylor means are shown to be of the Jackson order provided that, in each case, a suitable integrability condition is imposed upon the function

$$
\varphi_{x}(t)=\frac{1}{2}\{f(x+t)-2 f(x)+f(x-t)\} .
$$

Part I

Introduction

Several fundamental properties of (E, q) summability have been discussed in Hardy |2|, Knopp |5|, Prachar and Schmetterer |7|, and Bollinger |1|. Lorch $|6|$ has discussed the Lebesgue constants for ($E, 1$) summability in 1950. Sufficient conditions for Euler summability were studied by Holland et al. |4| in 1975. The degree (order) of approximation by (E, q) means has been discussed by Holland and Sahney [3] in 1976.

For the case $q-1$, a very precise upper bound will be determined for the degree of approximation by Euler means of the Fourier series for functions $f \in \operatorname{Lip} \alpha, 0<\alpha<1$. The L_{1} norm of the kernel $K_{n, 1}$ of this summability method has been studied by Lorch $|6|$, and since its order is $\left(2 / \pi^{2}\right)(\log n+O(1))$ there is no hope to obtain the Jackson order for the error using ($E, 1$)-means, without imposing further conditions.

1. Let $f \in L(-\pi, \pi)$ and be 2π-periodic. Let the Fourier series associated

[^0]with f be given by $S(x)=\sum_{-\infty}^{\infty} c_{m} e^{i m x}$, and its nth partial sum be $S_{n}(x)=\sum_{m=-n}^{n} c_{m} e^{i m x}$. For each x, write
\[

$$
\begin{equation*}
\varphi_{x}(t):=\frac{1}{2}\{f(x+t)-2 f(x)+f(x-t)\} . \tag{1.1}
\end{equation*}
$$

\]

Also, for each $q>0$, let $T_{n, q}=T_{n, q}(f ; \cdot)$ be the Euler (E, q)-means of S. That is,

$$
\begin{equation*}
T_{n, q}(x):=\frac{1}{(1+q)^{n}} \sum_{m=0}^{n}\binom{n}{m} q^{n-m} S_{m}(x) \tag{1.2}
\end{equation*}
$$

Lemma 1.3.

$$
\begin{aligned}
T_{n, q}(f ; x) & =T_{n, q}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n, q}(x-t) f(t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n . q}(t) f(x-t) d t
\end{aligned}
$$

where

$$
\begin{equation*}
K_{n, q}(t)=\left(\frac{q^{2}+2 q \cos t+1}{q^{2}+2 q+1}\right)^{n / 2} \frac{\sin \left(n \theta_{t}+\frac{t}{2}\right)}{\sin \frac{t}{2}} \tag{1.4}
\end{equation*}
$$

and $\theta_{t} \in(-\pi, \pi)$ is uniquely determined by the following relationships:

$$
\sin \theta_{t}=q \sin \left(t-\theta_{t}\right), \quad \operatorname{sgn} \theta_{t}=\operatorname{sgn} t, \quad\left|\theta_{t}\right|<|t| \leqslant \pi
$$

In particular,

$$
\begin{equation*}
\left.K_{n, 1}(t)=\cos ^{n}\left(\frac{t}{2}\right) \frac{\sin \left(\frac{n+1}{2}\right) t}{\sin \frac{t}{2}} \quad \text { (see Hardy }|2|\right) \tag{1.5}
\end{equation*}
$$

Furthermore, the error function in approximating f by $T_{n, q}(f, \cdot)$ is given by

$$
\begin{equation*}
T_{n, q}(x)-f(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) K_{n, q}(t) d t \tag{1.6}
\end{equation*}
$$

Proof. It is well known that S_{m} can be obtained by taking the convolution of f with the Dirichlet kernel:

$$
\begin{equation*}
S_{m}(x)=\frac{1}{2 \pi} \int_{-\cdot \pi}^{\pi} f(x-t)\left(\sum_{k=-m}^{m} e^{i k t}\right) d t \tag{1.7}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
T_{n, q}(x)=\left.\frac{1}{2 \pi}\right|^{-\pi} f(x-l)\left\{\frac{1}{(1+q)^{n}} \stackrel{\vdots}{m}_{n}^{n}\binom{n}{m} q^{n} \underline{\Sigma}_{m}^{m} e^{i k t}\right\} d t . \tag{1.8}
\end{equation*}
$$

However, we have, for $t \neq 0$ and $|t| \leqslant \pi$.

$$
\left.\begin{array}{rl}
\{\cdots\} & =\frac{1}{(1+q)^{n}} \frac{v_{n}^{\prime \prime}}{n}\binom{n}{m} q^{n m}\left[1+e^{i t} \frac{1-e^{i m t}}{1-e^{i t}+e^{i t} \frac{1-e^{i m \prime}}{1-e^{\prime \prime}}}\right] \\
& =\frac{1}{(1+q)^{n}} \stackrel{n}{m}_{0}^{n}\binom{n}{m} q^{n m}\left[\frac{e^{i t z}}{2 i \sin \frac{t}{2}} e^{i m t}-e^{\prime}-e^{i m t}\right. \\
2 i \sin \frac{t}{2}
\end{array}\right]
$$

By simple geometry (cf. Fig. 1). this expression can be written as

$$
\begin{aligned}
\{\cdots\} & =\frac{q^{n}}{(1+q)^{n} \sin \frac{t}{2}}\left(1+2 q^{-1} \cos t+q^{m^{2}}\right)^{n: 2} \sin \left(n \theta_{t}+\frac{t}{2}\right) \\
& =\left(\frac{q^{2}+2 q \cos t+1}{q^{2}+2 q+1}\right)^{n i 2} \cdot \frac{\sin \left(n \theta_{t}+\frac{t}{2}\right)}{\sin \frac{t}{2}}:=K_{n \cdot 4}(t)
\end{aligned}
$$

Figl:RE:
with $\sin \theta_{t}=q \sin \left(t-\theta_{t}\right), \operatorname{sgn} \theta_{t}=\operatorname{sgn} t$, and $\left|\theta_{t}\right|<t \leqslant \pi$. In particular, if $q=1$, then $\theta_{t}=t / 2$, so that

$$
K_{n, 1}=\left(\frac{1+\cos t}{2}\right)^{n / 2} \frac{\sin \left(\frac{n+1}{2}\right) t}{\sin \frac{t}{2}}=\cos ^{n}\left(\frac{t}{2}\right) \cdot \frac{\sin \left(\frac{n+1}{2}\right) t}{\sin \frac{t}{2}}
$$

Next, we also have

$$
\begin{aligned}
\frac{1}{\pi} \int_{0}^{\pi} & \varphi_{x}(t) K_{n, q}(t) d t \\
= & \frac{1}{2 \pi} \int_{0}^{\pi}|f(x+t)-2 f(x)+f(x-t)| K_{n, q}(t) d t \\
= & \frac{1}{4 \pi} \int_{-\pi}^{\pi}|f(x+t)+f(x-t)| K_{n, q}(t) d t \\
& -f(x) \frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n, q}(t) d t \\
= & T_{n, q}(x)-f(x)
\end{aligned}
$$

2. We now study the order of approximation of functions $f \in \operatorname{Lip} \alpha$, $0<\alpha<1$, by the Euler $(E, 1)$ means of the Fourier series. We demonstrate in the following theorem that whereas the order of approximation to functions in Lip α, by their Fourier series, is $0\left(\log n / n^{\alpha}\right)$, the order of approximation by $(E, 1)$ means of their Fourier series can be reduced to $0\left(1 / n^{\alpha}\right)$ provided that a certain integrability condition is imposed upon $\varphi_{x}(t)$. This gives the optimal order of approximation using Euler ($E, 1$)-means.

We have the following theorem:

Theorem 2.1. If $f \in \operatorname{Lip} \alpha, 0<\alpha<1$, is 2π-periodic, and

$$
\begin{equation*}
\int_{2 \pi / n}^{\pi} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+\frac{2 n}{\pi}\right)\right|}{t} d t \leqslant M n^{-a} \tag{2.2}
\end{equation*}
$$

for all x, then

$$
\begin{equation*}
E_{n, 1}(f)=\left\|T_{n, 1}(f ; x)-f(x)\right\|=0\left(\frac{1}{n^{\alpha}}\right) \tag{2.3}
\end{equation*}
$$

where

$$
T_{n, 1}(f ; \cdot)=T_{n, 1}(f)
$$

is the Euler $(E, 1)$-means of the Fourier series for f.
Proof. Using the ($E, 1$)-means of the Fourier series for f, we have

$$
\begin{aligned}
\left(T_{n, 1}-f\right)(x) & =\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) K_{n, 1}(t) d t \\
& =\frac{1}{\pi}\left\{\int_{0}^{a_{n}}+\int_{a_{n}}^{b_{n}}+\int_{b_{n}}^{\pi}\right\} \varphi_{x}(t) K_{n, 1}(t) d t \\
& =\rho_{1}+\rho_{2}+\rho_{3}, \quad \text { say },
\end{aligned}
$$

where we write $a_{n}=(2 \pi / n)$ and $b_{n}=(2 \pi / n)^{3}, \alpha /(\alpha+1) \leqslant \beta<1 / 2$. Now,

$$
\begin{aligned}
\left|\rho_{1}\right| & \leqslant \frac{1}{\pi} \int_{0}^{a_{n}} \frac{\left|\varphi_{x}(t)\right|}{t} \frac{n t}{2} \frac{\pi}{2} d t \\
& =\frac{n}{4} \int_{0}^{a_{n}}\left|\varphi_{x}(t)\right| d t \\
& \leqslant\left.\frac{n}{4} \cdot M\right|_{0} ^{a_{n}} t^{a} d t \\
& =\frac{M}{4(1+\alpha)}(2 \pi)^{1+a} n^{-a} .
\end{aligned}
$$

where $|f(x)-f(x+t)| \leqslant M n^{a}, 0 \leqslant M<\infty$. Thus,

$$
\left|\rho_{1}\right|=0\left(n^{-\sigma}\right)
$$

Also,

$$
\begin{aligned}
\left|\rho_{3}\right| & \leqslant \frac{2}{\pi} \int_{b_{n}}^{\pi} \frac{\left|\varphi_{x}(t)\right|}{t}\left|\cos ^{n}\left(\frac{t}{2}\right) \sin \frac{(n+1) t}{2}\right| d t \\
& =0\left(n^{3}\right) \cos ^{n}\left\{\frac{1}{2}\left(\frac{2 \pi}{n}\right)^{B}\right\} \int_{b_{n}}^{\pi}\left|\varphi_{x}(t)\right| d t \\
& =0\left(n^{\beta}\right)\left(1-\frac{1}{4} \frac{2^{2 \beta} \cdot \pi^{2 B}}{n^{2 \beta}}\right)^{n} \\
& =0\left(n^{3}\right) \exp \left\{-\frac{2^{2 \beta-2} \pi^{2 \beta} n}{n^{2 \beta}}\right\}
\end{aligned}
$$

and since $2 \beta-1<0$,

$$
\left|p_{3}\right|=0\left(r^{-n}\right), \quad r>1
$$

The study of ρ_{2} is more complicated and requires the following calculations. We have

$$
\begin{aligned}
& \pi \rho_{2}=2 \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}} \cos ^{n} \frac{t}{2} \sin \frac{(n+1) t}{2} d t \\
& =\int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}} \cos ^{n} \frac{t}{2} \sin \frac{(n+1) t}{2} d t \\
& -\int_{0}^{b_{n}-a_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{\left(t+a_{n}\right)}{2}} \cos ^{n}\left(\frac{t+a_{n}}{2}\right) \sin \frac{(n+1) t}{2} d t \\
& =\int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t}{2}} \cos ^{n} \frac{t}{2} \sin \frac{(n+1) t}{2} d t \\
& +\int_{u_{n}}^{b_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t}{2}}\left[\cos ^{n} \frac{t}{2}-\cos ^{n}\left(\frac{t+a_{n}}{2}\right)\right] \sin \frac{(n+1) t}{2} d t \\
& +\int_{u_{n}}^{b_{n}} \varphi_{x}\left(t+a_{n}\right) \cos ^{n}\left(\frac{t+a_{n}}{2}\right) \\
& \times\left[\frac{1}{\sin \frac{t}{2}}-\frac{1}{\sin \frac{\left(t+a_{n}\right)}{2}}\right] \sin \frac{(n+1) t}{2} d t \\
& -\int_{-0}^{a_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{\left(t+a_{n}\right)}{2}} \cos ^{n}\left(\frac{t+a_{n}}{2}\right) \sin \frac{(n+1) t}{2} d t \\
& +\int_{b_{n}-a_{n}}^{b_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{\left(t+a_{n}\right)}{2}} \cos ^{n}\left(\frac{t+a_{n}}{2}\right) \sin \frac{(n+1) t}{2} d t \\
& =I_{1}+I_{2}+I_{3}+I_{4}+I_{5} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|I_{1}\right| & \leqslant \int_{a_{n}}^{b_{n}} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right|}{\sin \frac{t}{2}} d t \\
& \leqslant \pi \int_{a_{n}}^{b_{n}} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right|}{t} d t \\
& \leqslant M n
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =\int_{a n}^{h_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t}{2}}\left[\left.\cos ^{n} \frac{t}{2}-\cos ^{n}\left(\frac{t+a_{n}}{2}\right) \right\rvert\, \sin \frac{(n+1) t}{2} d t\right. \\
& =\int_{a_{n}}^{h_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t}{2}} \frac{\pi}{2} \cos ^{n-1} \frac{\xi_{t}}{2} \sin \frac{\xi_{t}}{2} \sin \frac{(n+1) t}{2} d t .
\end{aligned}
$$

where $t<\xi_{t}<t+(2 \pi / n)<2 t$. Thus

$$
\begin{aligned}
\left|I_{2}\right| & \leqslant\left.\pi\right|_{a_{n}} ^{b_{n}} \frac{\left|\varphi_{x}\left(t+a_{n}\right)\right|}{t} \frac{\pi}{2} t d t \\
& \leqslant\left.\frac{\pi^{2}}{2} M\right|_{a_{n}} ^{b_{n}}\left(t+a_{n}\right)^{n} d t \\
& =0\left(b_{n}^{1+\alpha}\right)=0\left(n^{3(1+a)}\right) \\
& =0\left(n^{a}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|I_{3}\right| & \left.\leqslant \int_{a_{n}}^{b_{n}}\left|\varphi_{x}\left(t+a_{n}\right)\right| \frac{1}{\sin \frac{t}{2}}-\frac{1}{\sin \frac{t+a_{n}}{2}} \right\rvert\, d t \\
& \leqslant \int_{u_{n}}^{b_{n}} \frac{a_{n}}{2} \frac{1 \varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t}{2} \sin \frac{t+a_{n}}{2}} d t \\
& \leqslant\left. M_{1} a_{n}\right|_{-a_{n}} ^{b_{n}} \frac{\left(t+a_{n}\right)^{n}}{t\left(t+a_{n}\right)} d t
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|I_{3}\right| a_{n}^{-a} & \leqslant M a_{n}^{1-a} \int_{a_{n}}^{b_{n}} \frac{\left(t+a_{n}\right)^{a}}{t\left(t+a_{n}\right)} d t \\
& =M \int_{a_{n}}^{b_{n}} \frac{d t}{t\left(\frac{t}{a_{n}}+1\right)^{1-\alpha}} \\
& \leqslant\left. M\right|_{a_{n}} ^{\infty}-\frac{d t}{t\left(\frac{t}{a_{n}}+1\right)^{1 \cdot a}} \\
& =M \int_{1}^{\infty} \frac{1}{t(t+1)^{1-\alpha}} d t<\infty
\end{aligned}
$$

Consequently,

$$
\left|I_{3}\right| \leqslant M_{2} n^{-a}
$$

Also,

$$
\begin{aligned}
\left|I_{4}\right| & \leqslant \pi \int_{a_{n}}^{2 a_{n}} \frac{\left|\varphi_{x}(t)\right|}{t} \frac{n t}{2} d t \\
& =0\left(n\left(2 a_{n}\right)^{1+a}\right) \\
& =0\left(n^{a}\right) .
\end{aligned}
$$

Finally.

$$
\begin{aligned}
\left|I_{\mathrm{s}}\right| & =\left|\int_{b_{n}-a_{n}}^{b_{n}}\left(\frac{\varphi_{x}\left(t+a_{n}\right)}{\sin \frac{t+a_{n}}{2}} \cos ^{n}\left(\frac{t+a_{n}}{2}\right)-\sin \frac{n t}{2}\right) d t\right| \\
& \leqslant\left. M\right|_{0} ^{a_{n}}\left(t+b_{n}\right)^{a-1} d t \\
& \leqslant M\left\{\left(a_{n}+b_{n}\right)^{a}-b_{n}^{a}\right\}
\end{aligned}
$$

However,

$$
\begin{aligned}
\left(a_{n}+b_{n}\right)^{\alpha}-b_{n}^{\alpha} & =b_{n}^{\alpha}\left\{\left(1+\frac{a_{n}}{b_{n}}\right)^{a}-1\right\} \\
& \leqslant b_{n}^{\alpha}\left\{1+\alpha \frac{a_{n}}{b_{n}}-1\right\} \\
& =\alpha\left(\frac{a_{n}}{b_{n}}\right)^{1-a} a_{n}^{\alpha} \\
& =0\left(a_{n}^{\alpha}\right)
\end{aligned}
$$

Thus,

$$
\left|I_{5}\right|=0\left(n^{*}\right) .
$$

Combining $I_{1} \ldots, I_{5}$ we have

$$
\rho_{2}=0\left(n^{-\alpha}\right) . \quad 0<\alpha<1 .
$$

Consequently, combining ρ_{1}, ρ_{2} and ρ_{3}, we obtain

$$
E_{n, 1}(f)=O\left(n^{-\alpha}\right),
$$

which was to be proved.
3. Remark: (1) Large " 0 " in (2.3) can be replaced by small " 0 ", if the corresponding change is made in (2.2).
(2) For $q \neq 1$ and >0, the simple estimates in our proof give the weaker result due to Singh $|8|$ in Lemma 1.3 , viz.,

$$
\left(T_{n, q}-f\right)(x)=0\left(n^{-\alpha / 2}\right)
$$

Part II

1. Let $\left\{a_{n k}\right\}$ be a matrix defined by

$$
\frac{(1-r)^{n+1} \theta^{n}}{(1-r \theta)^{n+1}}=\bigcup_{k-0}^{x} a_{n k} \theta^{k} \quad \text { for } \quad|r \theta|<1
$$

and n taking only non negative integer values.
We study, in this section, 2π-periodic functions $f \in L|0,2 \pi|$ with a Fourier representation

$$
f(x) \approx \sum_{n=0}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{x} A_{n}(x)
$$

and we let $\varphi_{x}(t)=\frac{1}{2}\{f(x+t)-2 f(x)+f(x-t)\}$.
Definition 1.1. A given sequence $\left\{s_{k}\right\}_{0}^{\infty}$ is said to be Taylor summable, if

$$
\sigma_{n}^{r}=\sum_{k-0} a_{n k} s_{k}
$$

tends to a limit as $n \rightarrow \infty$, where $0 \leqslant r<1$.

Several authors, namely, Ishiguro [12], Lorch and Newman |13|, and Forbes [10], have studied this method of summability. In 1979, Holland et al. $|11|$ found a criterion for Taylor summability of Fourier series.

Let us write $\psi=e^{2 i u}$ and $1-r e^{i 2 u}=\rho e^{-2 i \theta}$. Then

$$
\begin{aligned}
& \sum_{k=0}^{\infty} a_{n k} \sin (2 k+1) u \\
& \quad=\operatorname{Im} \bigvee_{k-0}\left\{a_{n k} e^{i 2 k u} e^{i u}\right\} \\
& \quad=\operatorname{Im}\left\{\frac{(1-r)^{n+1} \psi^{n}}{(1-r \psi)^{n-1}} e^{i u}\right\} \\
& \quad=\operatorname{Im}\left\{\left(\frac{1-r}{\rho}\right)^{n+1} e^{i(2 n+13 u} e^{i 2 i n+1 n \theta}\right\} \\
& \\
& \quad=\left(\frac{1-r}{\rho}\right)^{n+1} \sin \left\{(n+1)\left[2(u+\theta)-\frac{u}{n+1}\right]^{\prime}\right.
\end{aligned}
$$

However, writing S_{k} to be the k th partial sum of the Fourier series for f, we have
thus,

$$
S_{k}-S=\frac{1}{\pi} \int_{0}^{\pi} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}} \sin \left(k+\frac{1}{2}\right) t d t
$$

$$
\begin{align*}
\sigma_{n}^{r} & =\sigma_{n}^{r}\left(S_{k}-S\right) \\
& =\frac{1}{\pi}\left(\frac{1-r}{\rho}\right)^{n+1} \int_{0}^{\pi} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}} \sin \left[(n+1)(t+\theta)-\frac{t}{2}(n+1)\right] d t \tag{1.2}
\end{align*}
$$

where now $1-r e^{i t}=\rho e^{-i \theta}$.
2. We now have the following theorem:

Theorem 2.1. If $f \in \operatorname{Lip} \alpha, 0<\alpha<1$, is 2π-periodic, and

$$
\int_{a_{n}}^{\pi} \frac{\left|\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)\right|}{t} d t=0\left(n^{-a}\right)
$$

uniformly in x, where $a_{n}=\pi\left\{n+\frac{1}{2}+(n+1) r /(1-r)\right\}^{-1}$, then

$$
\left\|\sigma_{n}^{r}-f(x)\right\|=0\left(n^{-x}\right)
$$

where $\sigma_{n}^{r}=\sigma_{n}^{r}(f ; \cdot)$ is the Taylor mean of order n of the Fourier series for f.

We require the following lemmas.
Lemma $2.2|10|$.
(i) $\left(\frac{1-r}{\rho}\right)^{\prime \prime} \leqslant e^{-4 t^{2}} . \quad A>0.0 \leqslant t \leqslant \pi$.
and
(ii) $\left|\left(\frac{1-r}{\rho}\right)^{\prime \prime}-\exp \left(-\frac{n r^{2}}{2(1-r)^{2}}\right)\right| \leqslant B n t^{+} . \quad B$ constant. $t>0$.

Lemma $2.3|14|$.

$$
\left|\theta-\frac{r t}{1-r}\right| \leqslant c t^{3}, \quad 0 \leqslant t \leqslant \frac{\pi}{2}, c \text { constant. }
$$

Proof of the Theorem. Using the Taylor transform of $\left\{S_{k}-S_{\}}^{\}}\right.$, we have $\sigma_{n}^{r}-f(x)$

$$
=\frac{1}{\pi}\left[\int_{0_{n}}^{a_{n}}+\int_{a_{n}}^{b_{n}}+\int_{b_{n}}^{\pi} \left\lvert\, \frac{\varphi_{x}(t)}{\sin \frac{t}{2}}\left(\frac{1-r}{\rho}\right)^{n \cdot 1} \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t\right.\right.
$$

$$
=\eta_{1}+\eta_{2}+\eta_{3} . \quad \text { say, where } b_{n}=a_{n}^{3} \text { for } \frac{1+\alpha}{3+a} \leqslant \beta<\frac{1}{2} .
$$

Now, since $|1-r| \leqslant \rho$ and $|\sin (t / 2)| \geqslant(t / \pi)$, then using Lemma 2.3 we have

$$
\left.\left\{n_{1} \left\lvert\, \leqslant \int_{0}^{a_{n}} \frac{\left|\varphi_{x}(t)\right|}{t}\right.\right\}\left(n+\frac{1}{2}\right) t+(n+1)\left(c t^{3}+\frac{n}{1-r}\right)\right\} d t .
$$

Also, since $t^{3} \leqslant t$, then

$$
\begin{aligned}
\left|\eta_{1}\right| & \leqslant\left. C^{\prime} n\right|_{0} ^{a_{n}}\left|\varphi_{x}(t)\right| d t \\
& =C^{\prime \prime} n\left(a_{n}^{1 ; o}\right) \\
& =0\left(n^{-\alpha}\right)
\end{aligned}
$$

We next consider

$$
\eta_{3}=\frac{1}{\pi} \int_{b_{n}}^{\pi} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}}\left(\frac{1-r}{\rho}\right)^{n+1} \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t
$$

By Lemma 2.2, $(1-r / \rho)^{n} \leqslant e^{-A n t^{2}}, 0 \leqslant t \leqslant \pi$, so that

$$
\begin{aligned}
\left|\eta_{3}\right| & \leqslant \frac{1}{\pi} \cdot \pi b_{n}^{-1} \int_{b_{n}}^{\pi}\left|\varphi_{x}(t)\right| e^{4(n+1) t^{2}} d t \\
& \leqslant b_{n}^{-1} e^{-4(n+1) b_{n}^{2}} \int_{0}^{\pi}\left|\varphi_{x}(t)\right| d t \\
& \leqslant C n^{\beta} e^{-t^{\prime} n^{1} 2 \cdot} \cdot \quad A^{\prime} \text { constant } \\
& =0\left(n^{-a}\right) \quad \text { for } \quad \beta<\frac{1}{2}
\end{aligned}
$$

Finally, we study η_{2} by writing

$$
\begin{aligned}
\eta_{2}= & \frac{1}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{\sin \frac{t}{2}}\left(\frac{1-r}{\rho}\right)^{n+1} \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta^{\prime} d t\right. \\
= & \frac{2}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{t} e^{\left.\left.-n r t^{2 / 2(1-r)^{2}} \sin \right\}\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t} \\
& +\frac{1}{\pi} \int_{a_{n}}^{b_{n}} \varphi_{x}(t)\left[\frac{1}{\sin \frac{t}{2}}\left(\frac{1-r}{\rho}\right)^{n+1}\right. \\
& \left.-\frac{1}{\frac{t}{2}} e^{-n r t^{2} / 2\left(1 n^{2}\right.}\right] \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta\right\} d t \\
= & \mu_{1}+\mu_{2}, \quad \text { say. }
\end{aligned}
$$

Now we have

$$
\begin{aligned}
\left|\mu_{2}\right| \leqslant & \int_{a_{n}}^{b_{n}}\left|\varphi_{x}(t)\right| \frac{2}{t}\left|\left(\frac{1-r}{\rho}\right)^{n+1}-e^{n r^{2} 211-r^{2} \geq t}\right| d t \\
& \left.+\int_{a_{n}}^{b_{n}}\left|\varphi_{x}(t)\right| \frac{2}{t}-\frac{1}{\sin \frac{1}{2}} \right\rvert\,\left(\frac{1-r}{\rho}\right)^{n \cdot 1} d t \\
= & v_{1}+v_{2}
\end{aligned}
$$

say, where by Lemma 2.2

$$
\begin{aligned}
\left|v_{1}\right| & \leqslant 2 \int_{a_{n}}^{b_{n}} \frac{\left|\varphi_{x}(t)\right|}{t} B(n+1) t^{4} d t . \\
& \leqslant C \cdot n n^{-3 \beta} n^{-(1+a) \beta} \\
& =0\left(n^{a}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left|v_{2}\right| & \leqslant C^{\prime} \int_{a_{n}}^{b_{n}} t\left|\varphi_{x}(t)\right| d t \\
& \leqslant C^{\prime \prime} n^{3} n^{-3(1-a)} \\
& =0\left(n^{-a}\right) \quad \text { by hypothesis. }
\end{aligned}
$$

Finally, we write

$$
\begin{aligned}
\mu_{1}= & \frac{2}{\pi} \int_{a_{n}}^{h_{n}} \frac{\varphi_{x}(t)}{t} e^{-m r^{2} / 2(1-r)} \sin \left(n+\frac{1}{2}+\frac{n+1}{1-r} \cdot r\right) t d t \\
& +\frac{2}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)}{t} e^{-n+2 / 2 t-n} \\
& \times \left\lvert\, \sin \left\{\left(n+\frac{1}{2}\right) t+(n+1) \theta^{\prime}\right.\right. \\
& \left.-\sin \left(n+\frac{1}{2}+\frac{n+1}{1-r} \cdot r\right) t \right\rvert\, d t \\
= & \chi_{1}+\chi_{2}, \quad \text { say, }
\end{aligned}
$$

where

$$
\begin{aligned}
\left|\chi_{2}\right| & \leqslant \frac{2}{\pi} \int_{a_{n}}^{b_{n}} \frac{\left|\varphi_{x}(t)\right|}{t}(n+1)\left|\theta-\frac{r t}{1-r}\right| d t \\
& \leqslant \frac{2 C}{\pi} \int_{a_{n}}^{b_{n}} \frac{\left|\varphi_{x}(t)\right|}{t}(n+1) t^{3} d t, \quad \text { by Lemma 2.3. } \\
& =0\left(n^{-a}\right), \quad \text { by hypothesis. }
\end{aligned}
$$

and since

$$
a_{n}=\pi\left\{n+\frac{1}{2}+\frac{n+1}{1-r} \cdot r\right\}
$$

then

$$
\begin{aligned}
\chi_{1}= & -\frac{2}{\pi} \int_{0}^{b_{n}-a_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{t+a_{n}} e^{\cdots n r\left(t+a_{n} n^{2} 2(1 \cdots \cdots z\right.} \\
& \times \sin \left(n+\frac{1}{2}+\frac{n+1}{1-r} \cdot r\right) t d t
\end{aligned}
$$

Taking the average, we have that

$$
\begin{aligned}
\chi_{1}= & \frac{1}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}(t)-\varphi_{x}\left(t+a_{n}\right)}{t} e^{-n r t^{2} / 2(1-r)^{2}} \sin \left(a^{-1} \pi t\right) d t \\
& \left.+\frac{1}{\pi} \int_{a_{n}}^{b_{n}} \frac{\varphi_{x}\left(t+a_{n}\right)}{t} \right\rvert\, e^{-n t^{2} / 2(1-r)^{2}} \\
& -e^{-n r\left(t+a_{n}\right)^{2} 2(1-r)^{2}} \mid \sin \left(a_{n}^{-1} \pi t\right) d t \\
= & 0\left(n^{-a}\right)
\end{aligned}
$$

by the same method as used in Part I. Hence

$$
\chi_{1}=0\left(n^{-a}\right)
$$

and thus

$$
\left\|\sigma_{n}^{r}-f(x)\right\|=0\left(n^{-a}\right)
$$

3. Remarks: (1) We believe that $0\left(n^{-\alpha}\right)$ is the optimal order and that Taylor means are saturated with order $0\left(n^{-\alpha}\right)$. Also, for $\alpha=1$, the order of error is believed to be $0\left\{\log n / n^{\alpha}\right\}$.
(2) Large " O " of the theorem may again be replaced by small " O," if in the hypotheses of the theorem we replace large " O " by small " O " and Lip α by lip α (the set of functions f satisfying $|f(x+h)-f(x)|=o\left(|h|^{\wedge}\right)$. uniformly in x).

References

1. R. C. Bollinger, On Euler summability, Math. Student (1971). 308-310.
2. G. H. Hardy, "Divergent Series," Oxford Univ. Press (Clarendon), Oxford, 1973.
3. A. S. B. Holland and B. N. Sahney On degree of approximation by Euler (E, q)means, Studia Sci. Math. Hungar. 11 (1976), 431-435.
4. A. S. B. Holland. B. N. Sahney. and J. Tzimbalario. A criterion for Euler summability of Fourier series, Boll. Un. Mat. Ital, 4, 12 (1975), 315-320.
5. K. Knopp, Über das Eulersche Summierungsverfahren, Math. Z. 15 (1922), 226-253 and 18 (1923), 125-256.
6. L. Lorch. The Lebesgue constants for ($E, 1$) summation of Fourier series, Duke Math. J. (1952), 45-50.
7. K. Prachar and L. Schmetterer, Über die Euler'sche Summierung Fourier'sche Reihen, Anz. Österreich. Akad. Wiss. Math. Natur. Kl. 85 (1948), 33-39.
8. T. Singh. A note on degree of approximation by linear operators, to be published.
9. A. Zygmund, "Trigonometric Series," Vols. I and II Cambridge Univ. Press, London/New York, 1959.
10. R. L. Forbes. Lebesgue constants for regular Taylor summability, Canad. Math. Bull. 8 (1965). 797-808.
11. A. S. B. Holiand, B. N. Sahney, and J. Tzmbalario. a criterion for Tablor summability of Fourier series. Canad. Math. Bull. 22 (3) (1979). 345--350.
12. K. Ishiguro. The Lebesgue constants for (γ, r) summation of Fourier series, Proc. Japant Acad. 36 (1960), 470-476.
13. L. Lorch, and ID. J. Nfwman, The Lebesgue constants for (\because, . $)$ summation of Fourier series. Canad. Math. Bull 6 (1963). 179-182.
14. C. L. Miraclf, The Gibbs phenomenon for Taylor mean and for $\left|F, d_{n}\right|$ means. Canad. J. Math 12 (1960). 660-673.
15. B. N. Sahney and P. D. Kathal. A new criterion for Borel summability of Fourter series. Canad. Math. Bull. 12 (1969), 573-579.

[^0]: * This research was supported. in part, by N.S.E.R.C. Grant A9225.
 ${ }^{+}$Deceased.

